
Ng0- 19443

November 15, 1989

Memory Management in Traceback Viterbi Decoders
O. Collins

JohnsHopkinsUniversity, Maryland

F. Pollara

CommunicationsSystemsResearchSection

The new Viterbi decoder for long constraint length codes, under development

for the DSN, stores path information according to an algorithm called "traceback."
The details of a particular implementation of this algorithm, based on three memory

buffers, are described. The penalties in increased storage requirement and]onger

decoding delay are offset by the reduced amount of data that needs to be exchanged
between processors, in a parallel architecture decoder.

I. Introduction

A new, long constraint length Viterbi decoder [1] is
under development for the DSN, and will be used to decode

the constraint length K : 15 experimental code adopted

by the GaIileo mission. This article describes the traceback

algorithm that is used in this decoder to store the most
likely paths into each node of the decoder's trellis.

The traceback (TB) method is one of two known ways
to store decisions made by the add-compare-select unit of a

Viterbi decoder, and then provide decoded bits as output.

The other method is the more traditional register ezchange

(RE) technique. The RE method is suitable for short con-
straint length decoders or for low-speed decoders due to

the large amount of data that needs to be read, modified,
and rewritten at each bit time.

The basic difference between these two methods is

that the RE method stores the actual hypothesized infor-

mation sequences (survivors), while the TB method stores

the results of comparisons of paths converging into each
node of the trellis. The maximum-likelihood path is then

found by tracing back through the trellis a path, according
to stored decisions. It is worth observing that the bits rep-

resenting the results of these comparisons actually coincide
with the information bits in convolutional codes where the

state transitions are governed by a shift register. There-

fore, the crucial difference between RE and TB methods

lies in the organization of the memory used to store the

survivors. The TB method is widely used in practice, but

not as widely described in the literature. It is mentioned in

[2], and described in [3] without any reference to required

storage or resulting decoding delay.

This article deals with the details of one version of the

traceback algorithm that is based on three pointers explor-

ing three memory buffers. Details on the hardware imple-

mentation of this version of the algorithm may be found in

[4]. If L branches are required as the minimum decoding

depth (L _ 5K is a usually accepted rule, but L _ 10K is

more realistic for low Eb/No applications), enough storage

98

must be provided for 3L branches in order to perform the

necessary buffering for this TB method. This penalty is

not important in practice since inexpensive and slow off-

chip memory can be used, while the RE method requires

fast on-chip registers.

II. Memory Management for Traceback

The memory required for the traceback method is or-

ganized in three banks as shown in Fig. 1. Each bank is L
bits long and 2K- 1 bits high (the number of states), which

gives a required storage of about 1 Mbyte, for K = 15 and
L = 170 (not including additional storage for 2K-1 accu-

mulated metrics). Any bit in this traceback memory can
be accessed by an address consisting of the state j (0 <

j < 2K-l) and the bit memory pointer m (0 < m < 3L).

There are three basic operations going on in the mem-

ory banks every bit time:

(1) Traceback, which is a "read" operation and traces a

path between states on the trellis by computing the

next (backward) state address from the presently read

memory content.

(2) Decoding, which is also a "read" operation and similar
to traceback, except that it is performed on "older"

data and it produces output information bits corre-

sponding to the path being traced.

(3) Writing new data (decisions given by the add-com-
pare-select unit), which moves forward on the trellis.
These bits can be written in the locations just freed

by the decoding operation.

Every L bit times a new traceback front is started in

one memory bank from state 0, and a new decode front
is started in a different memory bank at the state where

the previous traceback ended. New data is written into
the second memory bank as memory locations are freed

by the decode operation. The third memory bank re-
mains inactive. After a period of L bit times, the trace-

back/decode/write operations are switched to a different

pair of memory banks, as described in detail below.

Among the three operations, the writing of new data

is by far the most time consuming, since 2K-x bits must
be written for each information bit time. Read operations

only access one bit per information bit time.

Given the amount of required memory, it is cheaper

to use commercial RAM chips, rather than to design this

memory into custom VLSI circuits.

III. The Traceback Algorithm in Detail

The evolution of memory operations needed for the

traceback method is illustrated in Fig. 2, where the vertical

axis represents the elapsed time and each box represents

the status of memory at a given time. The variables' names
are the same later used in the pseudocode description of

the algorithm in Fig. 4.

At time --- 0, a new traceback is started from state

0 (state_tb = 0) at bit memory pointer m = L - 1 in

the rightmost memory bank (bank = 0). The top row of

Fig. 2 shows the memory bank number where traceback

(tb) and decoding (dec) operate. This traceback will end
in a certain state.lb at bit memory pointer m = 0.

Simultaneously, a decoding operation starts from state

state_dec (this is initially an arbitrary value) at bit memory

pointer m = L- 1 and proceeds until m = 0, in the leftmost

memory bank (bank 1). For each decoded bit, a full column
of bits can be overwritten with new data. Notice that

all three operations (traceback, decode, and write) evolve

from right to left.

At the end of the first block of L bits, a new traceback

starts from state 0 (state_tb = 0) at bit memory pointer

m = 0, moving from left to right in memory bank 1. At

the same time, a decoding operation goes on in the middle

bank (bank 2), starting at the state where the previous

traceback ended (state_dec = state.tb) and at bit memory
pointer m = 0. Also, new data is written in the bank doing

decoding. All of these operations evolve from left to right.

After the end of the second block, a traceback and a

decoding start at m = L - 1, both moving from right to
left, in banks 2 and 0, respectively. New data is written in
bank 0. After the third block, i.e., during the fourth block,

traceback and decoding take place in banks 0 and 1 again,

but all operations occur left-to-right, which is opposite to
the direction for the first block. Notice that the read/write

operations alternate between right-to-left and left-to-right

sweeps, which implies that Fig. 2 has a repetition cycle of
3 x 2 = 6 blocks.

Only after three full blocks is decoding performed on

data that has actually been written, rather than on initial-

ized memory. Therefore the decoding delay is at least 3L
bits. Since the decoded output is generated in reversed or-

der (last bit first in each block), one must provide a buffer
to reverse the output, bringing the decoding delay to 4L

bits. Finally, the delay due to the encoder memory must
be added, which yields a total decoding delay of 4L + K

bits.

99

The flow diagram of memory operations is shown in

Fig. 3, where the traceback and decoding operations are

shown as sequential in time, even though they may happen

simultaneously in a specialized hardware.

Figure 4 shows the pseudocode description of the TB

algorithm for a convolutionally coded system using a
(7,1/2) code and L = 100. The C-language version of this

algorithm has been used to demonstrate this concept by

software simulation and to verify the correctness of the al-

gorithm. The memory is denoted by the three-dimensional

array RAM[state][m][bank], M[state][.] stores the accumu-
lated metrics, and d[.] represents the branch metrics.

IV. Advantages of Traceback for Parallel
Processing

In a multiprocessor implementation, the Viterbi algo-

rithm based on register exchange requires that the full sur-

vivor sequences be exchanged among processors, together

with the accumulated metrics. It has been found [5] that
the traceback method drastically reduces the communi-

cation bandwidth required between processors by elimi-

nating the need for survivor exchanges. This reduction is

achieved at the price of higher decoding delay.

Figure 5 shows a general parallel architecture, where

the interconnection network is described in [6]. Since,

among the three operations described in Section II, the

write operation is the most demanding, it is performed con-
currently in each processor and its local memory. Each pro-

cessor operates sequentially on a certain number of states,

and then exchanges the accumulated metrics through the
interconnection network. The traceback/decoding opera-

tion may use a bus line to transfer information, consisting

of traceback memory addresses sent to all memories and

single bits coming from a particular memory, correspond-

ing to the memory location referenced by a given address.

The new address is computed from the old one and the

data bit read from a memory. The address computation

does not require parallelism, since it uses only one bit read

per information bit. At the end of each block the last ad-

dress found by the traceback unit is used to initialize the

decoding unit. Further details on the hardware implemen-

tation may be found in [4].

References

[1] J. Statman, G. Zimmerman, F. Pollara, and O. Collins, "A Long Constraint
Length VLSI Viterbi Decoder for the DSN," TDA Progress Report _-95, Jet

Propulsion Laboratory, Pasadena, California, pp. 134-142, November 15, 1988.

[2] G. C. Clark and J. B. Cain, Error Correction Coding for Digital Communica-
tions, Plenum Press, 1981.

[3] C. M. Rader, "Memory Management in a Viterbi Decoder," IEEE Trans. on

Communications, vol. COM-29, no. 9, pp. 1399-1401, September 1981.

[4] O. Collins, Coding Beyond the Computational Cutoff Rate, Ph.D. Thesis, Cal-

ifornia Institute of Technology, May 1989.

[5] F. Pollara, "Concurrent Viterbi Algorithm with Traceback," SPIE Proceedings,

vol. 696, p. 204-209, August 1986.

[6] O. Collins, F. Pollara, S. Dolinar, and J. Statman, "Wiring Viterbi Decoders

(Splitting deBruijn Graphs)," TDA Progress Report 42-96, Jet Propulsion Lab-
oratory, Pasadena, California, pp. 93-103, February 15, 1989.

lOO

u} BANK I BANK 2 BANK 0

"_ MEMORY CELL

L bits t L bits } L bits t

_ DECODE AND WRITE

_ TRACEBACK

Fig. 1. Memory organization in three banks.

ORIGINAE PAGE IS

OF POOR QUALITY

0

BANK1

dec

m

BANK 2 BANK 0

_i state-dec i tb

L-1 0 L-1

•D. rn

0- -0

iiliiiiiiiiiiiiiii iiiiii¸
de_c *"*tb iii_ _ dec

i state_ _.;._

dec

rn

.-_..:_..._._._._:._!_

L-I
.__.,_

2L

-0

t t {

3L ¸ -0

(L bits L bits L bits

DECODE AND WRITE

TRACEBACK

Fig. 2. Evolution ol memory operations in the traceback method.

bIk_no

101

IN ITIALIZE 1
TIME = 0
START STATE FOR tb = 0

SET BLOCK NUMBER I
SET BANK DOING TRACEBACK (tb)

SET BANK DOING DECODING (dec)

SET STARTING STATES I
SET STARTI NG TIME POI NTERS I

; '
TRACEBAOK

COMPUTE NEXT STATE FROM PRESENT
STATE AND MEMORY CONTENT

I DECODING

COMPUTE NEXT STATE FROM PRESENT

STATE AND MEMORY CONTENT;
OUTPUT DECODED BIT

•_ REVERSE OUTPUT _'_

FROM / WRITE

ADD-COMPARE-SELECT _ FOR ALL STATES:
WRITE A 1 IF UPPER PATH WINS

UNIT / WRITE A 0 IF LOWER PATH WINS

DECREMENT TIME POINTER IF BLOCK NUMBER IS EVEN
INCREMENTTIME POINTER IF BLOCK NUMBER IS ODD

1
[INCREMENTT_ME

!

Fig. 3. Flow diagram of memory operations.

102

ORIGINAL PAGE IS

OF POOR QUALITY

K=7

NS-2 ^ (K-I)

NS2=NS/2

L=I00

state tb=0
t ime=O

"constraint length"
"number of states"

"truncation length"

WHILE time < max

{

m=time MOD L

bit_par=time MOD 2

IF(m==0)

{
blk no=time/L

blk_par=blk_no MOD 2
tb=blk no MOD 3

dec=(tb+l) MOD 3
state dec=state tb

state tb=0

FOR m FROM 0 TO L-I {outr [m]=out[m] }

}

"start a new traceback front"

"bank doing traceback -- 0,1,2"

"bank doing decoding"

"set starting state for decoding"

"set starting state for new traceback"
"buffer for order reversal"

IF(blk_par==0) {ml=L-m-l}
ELSE {ml=m}

"right to left"

"left to right"

state_dec=(SHIFT RIGHT state_dec OF 1 BIT) OR (NS2*RAM[state_dec] It] [dec])
"decoding: address in bank=dec ''

state tb = (SHIFT RIGHT state tb OF 1 BIT) OR (NS2*RAM[state tb] [t] [tb])
-- -- "traceback: address in bank=tb"

out[m]= (SHIFT RIGHT state dec OF K-2 BITS) AND 1

FOR j FROM 0 TO NS-I

(
i=SHIFT RIGHT j OF 1 BIT

L0 = M[i] [bit_par XOR i] + d[K[j]]

L1 = M[i OR NS2] [bit_par XOR i] + d[3-K[j]]
IF(L1 < L0) {

M[j] [bit par]=Ll

RAM[j] [ml] [dec]=l
}

ELSE {

M[j] [bit_par]=L0

RAM[j] [ml] [dec]=0
}

"output buffer"

"add, compare, select"

"write one bit"

PRINT outr[L-l-m] "print decoded bits in correct order"

time = time+l

}

Fig. 4. Pseudocode for traceback algorithm.

103

INTERCONNECTION NETWORK

DECODING

P = PROCESSOR

M = MEMORY

TRACEBACK

Fig. 5. Parallel traceback architecture.

ADDRESS BUS

DATA BUS

104

